We'll help solve any application problem with a wide range of accessories and unparalleled customer service.

The Belimo Difference

- Customer Commitment.

Extensive product range. Competitive project pricing. Application assistance.
Same-day shipments. Free technical support. Five year warranty.

- Low Installation and Life-Cycle Cost.

Easy installation. Accuracy and repeatability.
Low power consumption. No maintenance.

- Long Service Life.

Components tested before assembly. Every product tested before shipment.
$20+$ years direct coupled actuator design.

SEE PAGE NUMBER		425	374	-	373	418	419	420	421	423	423	423	422	425	426	Refer to MFT Technical Documentation					
BELIMO ACTUATOR		$\frac{8}{\dot{j}}$		$\stackrel{\rightharpoonup}{0}$			눈 츨	$\begin{aligned} & \text { 을 } \\ & \stackrel{i}{1} \\ & \underline{\underline{x}} \end{aligned}$	$\begin{aligned} & \text { 운 } \\ & \dot{\omega} \end{aligned}$	둔 N				$\begin{aligned} & \text { 炰 } \\ & \text { N } \end{aligned}$	돛				$\begin{aligned} & \text { Z } \\ & \stackrel{1}{4} \\ & \frac{1}{N} \end{aligned}$	른 $\stackrel{y}{N}$	랜 N゙N
AF24 (-S) US		\bullet		\bullet										\bullet	\bullet						
AF120 (-S) US				\bullet											\bullet						
AF230 (-S) US				\bullet											\bullet						
AF24-SR US		\bullet		\bullet		\bullet	\bullet		-	\bullet	\bullet			\bullet	\bullet						
AFB24-MFT (-S), AFX24-MFT (-S)		\bullet		\bullet		\bullet			\bullet	\bullet	\bullet		\bullet	\bullet		\bullet	\bullet			\bullet	
AFB24-MFT95, AFX24-MFT95		\bullet		\bullet								\bullet		\bullet		\bullet	\bullet			\bullet	
AF24-PC US		\bullet		\bullet										\bullet	\bullet						
NFB24 (-S), NFX24 (-S)		\bullet		\bullet										\bullet							
NFBUP (-S), NFXUP (-S)		\bullet		\bullet																	
NFB24-SR (-S), NFX24-SR (-S)		\bullet		\bullet		\bullet	\bullet		\bullet	-	\bullet			\bullet							
NFB24-MFT (-S), NFX24-MFT (-S)		\bullet		\bullet		\bullet			\bullet	\bullet	\bullet		\bullet	\bullet		\bullet	\bullet			\bullet	
LF24 (-S) US		\bullet		\bullet										\bullet							
LF120 (-S) US				\bullet																	
LF230 (-S) US				\bullet																	
LF(C)24-3...US		\bullet		\bullet										\bullet							
LF24-SR...US		\bullet		\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet			\bullet							
LF24-ECON...US		\bullet		\bullet		\bullet								\bullet							
LF24-MFT...US		\bullet		\bullet		\bullet			\bullet	\bullet	\bullet		\bullet	\bullet		\bullet	\bullet				
TF24 (-S) US		\bullet												\bullet							
TF120 (-S) US																					
TF24-3 (-S) US		\bullet												\bullet							
TF24-SR (-S) US		\bullet				\bullet	\bullet	\bullet	\bullet	-	\bullet			\bullet							
GM_24-3		\bullet	\bullet	\bullet	\bullet								\bullet	\bullet							
GMX120-3			\bullet	\bullet	\bullet								\bullet								
GM_24-SR		\bullet	\bullet	\bullet	-	\bullet	-	-	-	\bullet	\bullet		\bullet	\bullet							
GMX24-MFT		\bullet	\bullet	\bullet	\bullet	\bullet				\bullet	\bullet		\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
GMX24-MFT95		\bullet	\bullet	\bullet	\bullet							-	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
GMX24-PC		\bullet	\bullet	\bullet	\bullet								\bullet	\bullet							
AM_24-3(-S)(-T)		\bullet	\bullet	\bullet	\bullet								\bullet	\bullet							
AM120-3			\bullet	\bullet	\bullet								\bullet								
AM_24-SR(-T)		-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	\bullet		\bullet	\bullet							
AMX120-SR			\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	-	\bullet		\bullet								
AMX24-MFT		-	\bullet	\bullet	\bullet	\bullet				-	\bullet		\bullet	\bullet		\bullet	\bullet	\bullet	-	-	\bullet
AMX24-MFT95		\bullet	\bullet	\bullet	\bullet							\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
AMX24-PC		\bullet	\bullet	\bullet	\bullet								\bullet	\bullet							
NM_24-3(-T)		\bullet	\bullet	\bullet	\bullet								\bullet	\bullet							
NM120-3			\bullet	\bullet	\bullet								\bullet								
NM_24-SR(-T)		\bullet	-	\bullet		\bullet	\bullet														
NM120-SR			\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	-	\bullet		\bullet								
NMX24-MFT		\bullet	\bullet	\bullet	\bullet	\bullet				\bullet	\bullet		\bullet	\bullet		\bullet	\bullet	-	\bullet	-	\bullet
NMX24-MFT95		\bullet	\bullet	\bullet	\bullet							\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
NMX24-PC		\bullet	\bullet	\bullet	\bullet								\bullet	\bullet							
NMQ24-MFT US		\bullet	\bullet	\bullet	\bullet								\bullet	\bullet							
LM_24-3 (-P5) (-P10) (-S) (-T)		\bullet	\bullet	\bullet	\bullet								\bullet	\bullet							
LMX120-3			\bullet	\bullet	\bullet								\bullet								
LM_24-SR(-T)		\bullet	-	\bullet		\bullet	\bullet														
LMX120-SR			\bullet	-	\bullet		\bullet														
LMX24-MFT		\bullet	\bullet	\bullet	\bullet	\bullet				\bullet	\bullet		\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
LMX24-MFT95		\bullet	\bullet	\bullet	\bullet							\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
LMX24-PC		\bullet	\bullet	\bullet	-								\bullet	\bullet							

Technical Data	SGA24, SGF24
Power supply	24 VAC $\pm 20 \% 50 / 60 \mathrm{~Hz}, 24 \mathrm{VDC} \pm 10 \%$
Transformer sizing	1 VA
Control signal Y	0.5 to 10 VDC; 2 to 10 VDC (switchable)
Power output	up to 10 actuators (1 mA max)
Degree of protection	(SGA24 only NEMA 2 [IP54])
Connection	Terminals (14 ga. wire max)
Humidity	5 to 95% RH non-condensing

Wiring Diagrams

Minimum Position Setting

\triangle
Provide overload protection and disconnect as required.
Override switches are optional.
3. A 500Ω resistor (ZG-R01) must be added for 4 to 20 mA control.

Application

These positioners are intended for the remote control of modulating actuators or for use as a minimum positioner (providing a minimum limit for the output signal from a modulating controller). The control range is 0 to 100% of the angle of rotation of the actuator.

Positioner SGA24 is for surface mounting with a NEMA 2 housing included. Positioner SGF24 is for flush mounting.

Operation

The positioner receives its supply voltage through terminals 1 and 2 . A rotary knob is turned, producing a proportional control signal (Y) at the output (terminal 3) of either 0.5 to 10 VDC or 2 to 10 VDC and therefore a proportional change in the position of the actuator between 0 and 100\%. When used for a minimum limit, the positioner works as a higher of 2 signal selector. This function allows only the signal from the controller or positioner, whichever is greater, to go to the actuator.

Function

The changeover from 2 to 10 V to 0 to 10 V is selected by means of a slide switch on the printed circuit board.

The angle of rotation of the knob can be limited mechanically, by moving the adjustable stops under the knob.

Accessory

Drilling template for SGF24 (flush mount)

Technical Data	PTA-250
Power supply	24 VAC $\pm 15 \% 24$ VDC $\pm 15 \%$
Power consumption	<1 W
Transformer sizing	2 VA
Input	
Isolation	optically isolated (when wired as such)
Type	normal or triac, jumper selectable
Trigger level	12 to 24 VAC/VDC or dry contact to com
Time between trigger pulses	12.5 milliseconds min
Impedance	VAC - 500Ω, VDC - $10 \mathrm{k} \Omega$
Pulse duration/resolution	four selectable ranges, in seconds of dry contact or SSR closure $\pm 40 \%$ of signal increment
Range 1	0.0235 to 6 seconds/in 0.0235 sec increments
Range 2	0.0196 to 5 seconds/in 0.0196 sec increments
Range 3	0.1 to 25.5 seconds/in 0.100 sec increments
Range 4	0.59 to 2.93 seconds/in in 0.0092 increments
Output	
Voltage	2 to 10 VDC
Current	15 mA max
Accuracy	$\pm 2 \%$
Electrical connection	wire terminals, 14 gauge max
Ambient temperature	$-20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}\left[-30^{\circ} \mathrm{C}\right.$ to $\left.65^{\circ} \mathrm{C}\right]$
Operating humidity	5\% to 95\% non-condensing
Mounting	Snap-Track (provided)
Dimensions board	$23 / 16^{\prime \prime} \times 23 / 16^{\prime \prime} \times 9 / 16^{\prime \prime}$
with Snap-Track	$23 / 8^{\prime \prime} \times 2$ 1/4" $\times 15 / 16^{\prime \prime}$
Weight	1.50 z

Wiring Diagram

[^0]Provide overload protection and disconnect as required.
2. Actuator and controller must have separate transformers.
3. Consult controller instruction data for more detailed installation information

4 To reverse control rotation, use the reversing switch.
5. The PTA-250 and actuator may be powered from the same transformer

Application

The PTA-250 converts a single pulse-width modulated input to an analog, 2 to 10 VDC, output to modulate a Belimo -SR actuator. The PTA-250 is available for replacement of existing installations. The ...MFT product can replace 100\% of the PTA-250 applications, more effectively.

Operation

A timed contact or solid state closure from the controlling microprocessor controller is converted to a linear analog output with 256 steps of resolution. The last output is held until the PTA-250 receives the end of the next pulsed output. The PTA-250's output will not wrap around if an excessively long input pulse is received. Four input pulse clock rates are jumper selectable. Normal/Triac input positions are also jumper selectable. The input signal can be optically isolated from the PTA-250 circuit and can accept either positive or negative polarity. A red LED indicator is provided to indicate that power is applied to the PTA-250 and that the microprocessor is functioning. A green LED indicator is provided to indicate the presence of a pulse from the controller.
NOTE: The onboard zero and span adjustments are not for field use.

Technical Data	IRM-100
Power supply	$\begin{aligned} & 24 \mathrm{VAC} \pm 15 \% \\ & 24 \mathrm{VDC} \pm 15 \% \end{aligned}$
Power consumption	$<1 \mathrm{~W}$
Transformer sizing	1 VA
Input	
Voltage (max)	25 VDC
Zero (starting point)	0 to 18 VDC
Span adjustment	2.6 to 17 VDC
Impedance	$400 \mathrm{k} \Omega$
Current	0 to 20 mA
Impedance	500Ω
Output	
Voltage	2 to 10 VDC
Current	15 mA max
Electrical connection	wire terminals, 14 gauge max
Ambient temperature	$-20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}\left[-30^{\circ} \mathrm{C}\right.$ to $\left.65^{\circ} \mathrm{C}\right]$
Humidity	5 to 95\% RH non-condensing
Mounting	Snap-Track (provided)
Dimensions board	1-3/16" x 2-3/16" x 9/16"
with Snap-Track	1-7/8" $\times 2-3 / 8^{\prime \prime} \times 15 / 16^{\prime \prime}$
Weight	0.9 oz .

Wiring Diagram

1 Provide overload protection and disconnect as required.
22 The controller should be powered from a separate transformer.
3 The actuator and IRM-100 may be powered from the same transformer.
4 Consult controller instruction data for more detailed installation information.
5. To reverse control rotation, use the reversing switch.

Application

The IRM-100 input rescaling module is designed to change non-standard voltage or current signal levels into a 2 to 10 VDC output to modulate Belimo -SR type actuators. The IRM-100 is available for replacement of existing installations. The ...MFT product can replace 100% of the IRM-100 applications, more effectively.

Operation

The IRM-100 is installed between a controller and a Belimo ...-SR actuator. The module can be adjusted to work with a zero offset of 0 to 18 VDC and a span range of 2.6 to 17 VDC. The IRM-100 has a 2 pin jumper mounted to the circuit board. When the jumper is connected between these 2 pins, a 4 to 20 mA signal can be fed directly into the IRM. The result being the conversion of a wide range of analog control signals to a 2 to 10 VDC range.

Jumper on both pins for 4 to 20 mA applications

The IRM may also be used to sequence several actuators from one signal source. This is done by adjusting the IRM units to work at different in put ranges.

IRM-100 Used as a Current Amplifier

In some applications, the capacity of a controller output may not have current available to control multiple end devices. An example would be a controller which has an output current of .5 mA maximum. If 10 AF24-SR US actuators have to be driven from the same output, the current requirement would be $\mathrm{I}=\mathrm{E} / \mathrm{R}=(10 \mathrm{volts}) /(100000$ $\Omega)=.1 \mathrm{~mA}$ for each actuator. For the 10 actuators, 1 mA of current would be necessary to properly control the actuators.
The IRM-100 may be used as an interface to provide a higher current capacity to the system. The IRM-100 has an output capacity of 15 mA . This higher level output can handle a greater number of actuators. By calibrating the IRM-100 for a 2 to 10 VDC input to achieve a 2 to 10 VDC output, IRM-100 provides this added capacity for the system.

The same circuit will also work if a 4 to 20 mA signal is used. A 500Ω resistor is placed across terminal \#1 and \#3 which converts the 4 to 20 mA to 2 to 10 VDC.

Dimensions (Inches [mm])

Analog to Digital Switch ADS-100

For Belimo Proportional (... -SR) Actuators

Technical Data	ADS-100
Power supply	$24 \mathrm{VAC} \pm 20 \% 50 / 60 \mathrm{HZ}$
Power consumption	1.5 W
Transformer sizing	3 VA (not including contactors)
Electrical connection	9 pole wire-terminal
Control input	2 to 10 VDC
Input impedance	$100 \mathrm{k} \Omega$
Adjusting range	2.5 to 9.5 VDC
Dead band	$0.3^{\circ} \mathrm{F}$ fixed
Switching capacity	24 VAC 10 VA max., (voltage sinking triac)
Mounting	Snap-Track (provided)
Dimensions \quadwith	
	$3-1 / 4^{\prime \prime} \times 2^{\prime \prime}$

Application

To control reheat coils and/or a fan stage in a fan-powered terminal unit. The ADS-100 is controlled by a 2 to 10 VDC reheat output of a temperature controller. (TRS-M)

Operation

The ADS-100 is designed to switch up to three independent stages of reheat on and off, according to a 2 to 10 VDC signal. The three output stages are furnished with a triac output. Each stage can be adjusted independently from each other over the 0 to $2.4^{\circ} \mathrm{F}$ throttling range of the TRS-M temperature controller.

The ADS-100 is shipped pre-adjusted, as shown in the following table. (Based on differential from setpoint)

	1st. stage	2nd. stage	3rd. stage
Switch ON	$-0.45^{\circ} \mathrm{F}$	$-1.35^{\circ} \mathrm{F}$	$-2.25^{\circ} \mathrm{F}$
Switch OFF	$-0.15^{\circ} \mathrm{F}$	$-1.05^{\circ} \mathrm{F}$	$-1.95^{\circ} \mathrm{F}$
Switch ON	2.8 V	5.8 V	8.8 V
Switch OFF	0.4 V	0.2 V	0.4 V

If desired, each stage may be field readjusted for special requirements. Three red LED indicators are provided to verify when the stages are energized.

Setpoint Readjustment

Tools required: small screwdriver, voltmeter.
To readjust the output stages, the following procedure is used:
Connect the voltmeter to the desired switchpoint reference signal output and terminal 1 (COM). Readjust the switch point reference signal output with the corresponding potentiometer to your desired switch point. The adjustment range is 2.5 to 9.5 VDC . If you go below or above these values the ADS-100 may not switch off or on properly. If this occurs you have to increase or decrease your switching level until the ADS-100 works correctly.

ADS-100 Used as an Auxiliary Switch

The ADS-100 was originally designed as an accessory to switch on stages of electric reheat from an electronic thermostat. However, it can also function as an electronic auxiliary switch from any device which can provide 0 to 10 VDC signal, such as any feedback wire 5 from any ...SR or ...MFT type actuator.
The ADS-100 has 3 triac outputs rated at 10 VA maximum each which will turn on, in sequ ence, with an increasing voltage.

Dimensions (Inches [mm])

Technical Data	
Power supply	$24 \mathrm{VAC} \pm 20 \% 50 / 60 \mathrm{~Hz}$
Fusing	4 A slow blow fuse
Power consumption	min. 5 W (without actuator load)
Transformer	8 VA
Batteries	24 V Nominal 1.2 Ah (2-12 volt lead-acid batteries; bat- teries not supplied with module)
Maintenance	the batteries should be checked annually (approximate life is 6 years)
Charging circuit	charge current max. 150 mA charge voltage 24-27 V, temperature compensated
Battery back-up	24 V nominal 1.2 Ah, max. 60 W auto shut off after 250 seconds
operation	green - main power source operation (battery will be charged) red - battery back-up operation
Mounting	mounted in the control panel with an 11 terminal plug-in base (not supplied with module)
Ambient temperature	$14^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}\left[-10^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}\right]$

Dimensions (Inches [mm])

Application

Several Belimo damper actuators can be used either with 24 VAC or 24 VDC.
In case of a power failure, the NSV24 battery back-up unit switches the damper actuator from its main AC power supply over to the 24 VDC battery to drive the actuators to their safety position.

For easy maintenance, the battery back-up system is placed in the control panel, not in the actuator. Several actuators may be powered by one back-up module. The batteries are separate from the NSV24.

Operation

The NSV24 is connected to the same 24 VAC power source as the damper actuators. It also charges the 24 V (2-12 volt batteries) storage battery. Its charge current is limited to 150 mA maximum, and the maximum charge voltage is temperature compensated.

In case of a power failure, the NSV24 switches immediately over to the battery power source, and according to the control function, the actuators will move to their safety position. After 250 seconds, the batteries are disconnected from the actuators to prolong battery life. Because of this, a safe battery back-up can be provided for several short-term failures. The main power source operation is indicated by a green LED, and the battery power source by a red LED.

Connectable Actuator Models	
GMB24-3X1	Maximum per module
GMX24-3	15
GMX24-MFTX1	15
GMB24-SR	15
AMB24-3	30
AMX24-MFT	30
AMB24-SR	30
NMB24-3	30
NMX24-MFT	30
NMB24-SR	30
LMB24-3	30
LMX24-MFT	30
LMB24-SR	30

Accessories

NSV-BAT $\quad 12$ VDC 1.2 Ah battery (2 required)

Wiring Diagrams

This diagram is shown in the "failed" mode and prior to the 250 sec time-out function.

Technical Data	NSV-BAT
Battery type	lead-acid
Voltage	12 VDC
Nominal capacity	1.2 AH
Connections	.187 male spade
Weight	$1.32 \mathrm{lb}[.6 \mathrm{~kg}]$

ZG-R01 Resistor for 4 to 20 mA conversions

Application

The NSV-BAT battery is for use with the NSV24 battery back-up module. It is a sealed, maintenance free, lead-acid battery. Two NSV-BAT batteries are required for one NSV24.

Dimensions (Inches [mm])

Application

The ZG-R01 is a 499Ω Resistor which has been encased in a section of heat shrink tubing with short sections of hook up wire.The ZG-R01 is used to convert a 4 to 20 mA signal into a 2 to 10 VDC control signal.
Dimensions (Inches [mm])

ZG-R02 50\% Voltage Divider

The impedance of the device attached must be $100 \mathrm{k} \Omega$.

Application

The ZG-RO2 is a voltage divider designed so that when connected to a $100 \mathrm{~K} \Omega$ input impedance, the output signal is 50% if the input signal. The voltage divider circuit is encased in a short section of heat shrink tubing with three short sections of hook up wire.
Dimensions (Inches [mm])

Resistor kits for Multiple Actuator Applications

Resistor Kit No. ZG-R03	
135Ω Operation	
No. of Actuators	Resistance Ω
2	140
3	71.5
4	47.5
5	37.5
6	28

Resistor Kit No. ZG-R05
4 to 20 mA Operation

No. of Actuators	Resistance Ω
1	237
2	150
3	124
4	113
5	105
6	97.6

Resistor Kit No. ZG-R06
For Honeywell『 Electronic Series 90 Circuits (W7100, W973, T775)
No. of Actuators Resistance Ω

2	1300
3	910
4	768

Application

For use with the ...MFT95 actuators and Honeywello controllers

ZG-R03	See table to left
ZG-R05	See table to left
ZG-R06	See table to left

ZG-CBLS Junction box

Technical Data	ZG-CBNS / ZG-CBLS
Voltage rating	250 VAC
Electrical connection	maximum 5 line voltage connection
Housing rating	UL94 5VA
Material type	FR/ABS CYCOLAC FR15
Ambient temperature	$-22^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}\left[-30^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right]$
Storage temperature	$-40^{\circ} \mathrm{F}$ to $176^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right.$ to $\left.80^{\circ} \mathrm{C}\right]$
Agency listing	UL pending
Quality standards	ISO 9001
Weight	$<0.5 \mathrm{lbs}$

ZG-CBNS

Application

The ZG-CBNS accessory is used when the application requires the wiring terminations to be made at the actuator.

Operation

The ZG-CBNS serves as an electrical junction box. The products that can be used with this accessory are as follows:
AF24 US, AF120 US, AF230 US, AF24-SR US

* Due to the internal volume of this junction box, according to UL requirements, The ZG-CBNS CANNOT be used with the following products:

NF24-S2 US, AF24-S US, AF120-S US, AF230-S US

ZG-CBLS

Application

The ZG-CBLS accessory is used when the application requires the wiring terminations to be made at the actuator.

Operation

The ZG-CBLS serves as an electrical junction box.
This product can be used with any standard LF product.

Transformer ZGX40

Application

The ZG-X40 is a 40 VA, 120 to 24 VAC transformer. It is designed so that both the primary and secondary leads exit through the same side of a 4-1/4" square outlet box cover. With this design, all wiring can be done inside a standard J-box with a minimum amount of labor.

Technical Data	ZG-X40
Primary voltage	120 VAC $50 / 60 \mathrm{~Hz}$
Secondary voltage	24 VAC
Max VA rating	40 VA
Connections	$6-1 / 2^{\prime \prime}$ leads with stripped ends
Type	Class 2
Mounting method	$4-1 / 4$ " square outlet box cover
Agency approvals	UL 1585, CSA 22.2 \#66
Wire Specification	No. 18 AWG leads, 6-1/2" length
Wire	Color
Termination	White-Black
Primary	Yellow-Yellow
Secondary	

Original AF24..US	4

Refer to appropriate actuator documentation for specific VA ratings.

Wiring Diagram

Power Supply, Signal Simulator PS-100

Application

The PS-100 power supply and signal simulator is designed to operate most proportional, floating, and On/Off style actuators without the presence of a controller.

The PS-100 can produce 24 VAC $0 n / 0 f f$ and floating control signal along with a 0 to 10 VDC and 135Ω proportional signal. A multi-function digital display is provided which can read either the 0 to 10 VDC output or a 0 to 10 VDC feedback signal either as voltage or percentage of control.

The PS-100 comes with a 120 to 24 VAC, plug into the wall transformer for power. Both the PS-100 and transformer are supplied in a black fabric carrying case.
Replacement Power Supply: PS-XFMR

Technical Data	PS-100
Power supply	120 VAC 50/60 Hz
Power consumption	$<4 \mathrm{~W}$ without actuator
Transformer Primary	120 VAC, 35 W
Secondary	24 VAC, Class 2 trans.
PN	PS-XFMR
Terminal outputs	push-button, wire terminals (12) on/off, floating point, 135Ω, 0 to 10 VDC
VDC output range	0 to 10 VDC
Display	LCD
Readouts Output	0 to 10 VDC in volts or percentage based on a 2 to 10 VDC control span
Input	0 to 10 VDC in volts or percentage based on a 2 to 10 VDC control span
Weight	3 lbs [1.4 kg] with case

Dimensions (Inches [mm])

Technical Data	ZG-HTR
Power supply	$24 \mathrm{VAC} \pm 20 \% 50 / 60 \mathrm{~Hz}$
Transformer sizing	35 VA
Heater output	35 watts
Actuator low ambient rating with enclosure enclosure with 1" insulation	$-40^{\circ} \mathrm{F}\left[-58^{\circ} \mathrm{C}\left[-50^{\circ} \mathrm{C}\right]\right.$
Weight	$110 \mathrm{oz}[320 \mathrm{~g}]$

Application

The ZG-HTR Thermostat/Heater kit is designed to be field installed to the original AF and NF series actuators. The ZG-HTR provides a thermostatically controlled heater which allows the original AF and NF actuators to be used below their normal low ambient temperature rating. At approximately $10^{\circ} \mathrm{F}\left[-12^{\circ} \mathrm{C}\right]$ the heater energizes to maintain the actuators internal temperature to within working limits. The rubberized heating element has an adhesive back which attaches to the side of the actuator housing. The thermostat assembly mounts to the rear of the actuator and provides for the connection of the 24 VAC supply voltage. The actuator/heater assembly should be contained in a housing, similar to the ZS-100 Weather Shield, to achieve best results.

Wiring Diagram

1Provide overload protection and disconnect as required.
The ZG-HTR may be wired to the same transformer as the actuator. Total VA ratings must be observed.
Power to the ZG-HTR must be applied continuously during the heating season. Do not wire the ZG-HTR to the on-off control signal when on-off type actuators are being used.

Dimensions (Inches [mm])

Standard:

Ø $3 / 8^{\prime \prime}$ to $3 / 4^{\prime \prime}$
$3 / 8^{\prime \prime}$ to $5 / 8^{\prime \prime}$
Optional*
Ø $3 / 4^{\prime \prime}$ to 1.05 "
*with K4-1 US clamp

Special Control Range Applications				
Control Signal	Belimo Actuat		Accessory	Notes
1 to 5 VDC	AFX24-MFT NFX24-MFT LF24-MFT US TF24-MFT US	GMX24-MFT AMX24-MFT NMX24-MFT LMX24-MFT	None	Preset at factory or use PC tool software. Set start point for 1 VDC, span for 4 VDC.
4 to 20 mA	Any -MFT,-SR Actuator		$\begin{array}{\|l\|} \hline \text { ZG-R01, or } \\ 500 \Omega, 1 / 2 \mathrm{~W} \text { resistor } \end{array}$	Wire the ZG-R01 across the wires \#1 and \#3.
10.5 to 13.5 VDC	AFX24-MFT NFX24-MFT LF24-MFT US TF24-MFT US	GMX24-MFT AMX24-MFT NMX24-MFT LMX24-MFT	None	Preset at factory or use PC tool software. Set start point for 10.5 VDC , span for 3 VDC.
14 to 17 VDC	AFX24-MFT NFX24-MFT LF24-MFT US TF24-MFT US	GMX24-MFT AMX24-MFT NMX24-MFT LMX24-MFT	None	Preset at factory or use PC tool software. Set start point for 14 VDC, span for 3 VDC.
Pulse Width Modulation	AFX24-MFT NFX24-MFT LF24-MFT US TF24-MFT US	GMX24-MFT AMX24-MFT NMX24-MFT LMX24-MFT	None	Preset at factory or use PC tool software.

*Preset at factory or use MFT PC tool software
IRM-100 Calibrate the IRM-100 for an input range of 1 to 5 VDC. Calibrate IRM-100 2-10 in 2 to 10 out for signal amplification.

Sequencing Two or More Actuators With One Control Signal using the IRM-100

[^0]: 1
 2
 2
 3
 4
 4
 4

